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Introduction

Recent developments in AdS/CFT allow us to relate various
features of strongly coupled gauge theories at finite temperature
with their bulk duals. For example

Field theory at finite temperature ≡ black brane in the bulk

Entropy of the gauge theory≡ Area of the horizon of the black
brane

Hydrodynamics equations≡Equations describing the evolution
of large wavelength perturbations of the black brane

Dissipations in gauge theories ≡ Absorptions into black holes.
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Introduction

Various gauge theories with bulk duals exhibit several universal
features.

A prime example: η/s = 1
4π , (KSS).

Purpose of this talk: Thermal and electrical conductivities
also show some universal features.

In particular we shall show that

σ = σH

(
sT

ε+ P

)2

where σ is the conductivity of the dual gauge theory, σH is a
geometrical quantity eveluated at the horizon. s,T , ε and P
are respectively the entropy density, temperature, energy
density and pressure of the dual gauge theory.
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Introduction

And also
κT

ηT

m∑
j=1

(µj)2 =
d2

d − 2

(c
′

k ′

)
,

where κT is the thermal conductivity of the dual gauge theory
and µ is the chemical potential. c

′
, k
′

are determined from
thermodynamics.
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Plan of the talk

Electrical and thermal conductivities: What to compute from
gravity side.

Electrical Conductivity : Observation

Explaining observation.

Thermal conductivity to shear viscosity ratio.

Conclusion.
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Hydrodynamics in the presence of conserved current

∂µT
µν = 0, ∂µJ

µ
i = 0

Tµν = (ε+ P)uµuν + Pgµν + τµν , JµI = ρIu
µ + νµI

uµu
µ = −1

τµν = η (∂µuν + ∂νuµ − ...) (1)

νµI = −
m∑

J=1

κIJ

(
∂µ
µJ

T
+ uµuλ∂λ

µJ

T

)
(2)

η = s
4π .

General result for κIJ not known.
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Eletrical and thermal conductivity

Thermal conductivity: Response to heat gradient in the
absence to electric current (Jα = 0).

T tα = − 1
m∑

I ,J=1

ρI κ−1
IJ ρJ

(
ε+ P

T
)2(∂αT − ...) (3)

κT =
(
ε+P
T

)2 1
mP

I ,J=1
ρI κ−1

IJ ρJ

For single charge: κT =
(
ε+P
T

)2 κ
ρ2 .

Electrical conductivity: 〈JαJα〉
−iω = κ

T = σ.
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Observation

σH = 1
2κ2g2

eff(r)
g

d−3
2

xx

∣∣∣
r=rh

.

Obeservation: For asymptotically AdS space time.

Gravity theory in d + 1 dimension σH σB σH( sT
ε+P

)2

R-charge black hole in 4 + 1 dim.
N2

c T (1+k)2

16π(1+ k
2
)

N2
c T (2+k)

32π

N2
c T (2+k)

32π

R-charge black hole in 3 + 1 dim. N
3
2
c

24
√

2π
(1 + k)

3
2

(3+2k)2N
3
2
c

63π
√

2(1+k)

(3+2k)2N
3
2
c

63π
√

2(1+k)

R-charge black hole in 6 + 1 dim.
4N3

c T 3(1+k)3

81(1+ k
3
)3

4N3
c T 3(1+k)

27(3+k)

4N3
c T 3(1+k)

27(3+k)

Reissner Nordstrom black hole in various dimension can also
be checked to follow same.
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Away from conformality:

Charged D1 brane(David,Mahato, Thakur and Wadia:
1008.4350): It turns out to be again

σB = σH(
sT

ε+ P
)2.

Charged lifsitz like black hole: σB 6= σH

(
sT
ε+P

)2
.

Question: What is the most general background for which
above results holds?
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Gravity side: assumptions and equations

ds2 = −gtt(r)dt2 + grr (r)dr2 + gxx(r)
∑d−1

i=1 (dx i )2 where r is
the radial coordinate.

Rotational and translational symmetry assumed.

gtt ∼ (r − rh), grr ∼ 1
r−rh

. gxx finite at horizon.

Above metric includes more general cases than asymptotically
AdS space.

S = 1
2κ2

∫
dd+1x

√
−g(R − 1

4g2
eff(r)

FµνF
µν + Other fields).

Rµν − 1
2gµνR = TE .M.

µν + TMatter
µν .

∂µ

(
1

g2
eff

√
−gF νµ

)
= 0.
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Computing current current corelator 〈JxJx〉: Perturbation

Ax = φ(r)e−iωt+iqx1 and metric fluctuation htx , ....

Set q = 0. Get a equation only in terms of field φ.

d

dr
(N(r)

d

dr
φ(r)) + M(r)φ(r) = 0. (4)

N(r) =
√

g 1
g2

eff
g xxg rr

M(r) = (2κ2)2ρ2 grrgtt√
ggxx
− ω2N(r) grrg

tt
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Solution

Boundary condition:
a.φ = φ0 at the boundary.
b. In going bounday condition at the horizon.

Solution: Solve φ(r) upto linear order in ω.

φ(r , ω) = φ1(r) + iωφ2(r) + ....

To show universality we need solution in terms of back ground
fields.

Using ingoing boundary condition at the horizon to show that
one needs to solve φ1(r) only.
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Computing current current corelator 〈JxJx〉

Action for φ in the bulk

S =
1

2κ2

∫
dωdd−1q

(2π)d
dr
[1

2
N(r)

d

dr
φ(r , ω, q)

d

dr
φ(r ,−ω,−q)

−1

2
M(r)φ(r , ω, q)φ(r ,−ω,−q)

]
. (5)

Boundary action:

Sbdy = lim
r→∞

1

2κ2

∫
dωdd−1q

(2π)d

(
1

2
N(r)

d

dr
φ(r , ω, q)φ(r ,−ω,−q)

)
= lim

r→∞

∫
ddq

(2π)d
φ0(ω, q)F(ω, q)φ0(−ω,−q). (6)

Retarted corelator G = −2F(ω, q).
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Computing current current corelator 〈JxJx〉: Simplification

Conductivity:

σ = − lim
ω→0

2 =

(
F(ω, q = 0)

)
ω

= lim
ω→0

1

ω

=

(
1

2κ2

(
N(r) d

dr φ(r)φ(r)
))

limr→∞

φ0φ0
.

Use Equation for φ:

d

dr
=
[ 1

2κ2

∫
ddq

(2π)d

(
1

2
N(r)

d

dr
φ(r , ω, q)φ(r ,−ω,−q)

)]
= 0.

(7)

Can be evaluated at any radial position r , evaluate it at the
horizon. (Myers, Sinha, Poulos.....)
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Conductivity

In going boundary condition:

lim
r→rh

d

dr
φ(r) = −iω lim

r→rh

√
grr

gtt
φ(r) +O(ω2) (8)

Only need to solve for φ1(r)

σB = 1
2κ2

(
1

g2
eff

g
d−3

2
xx

)
r=rh

(
φ1(rh)

φ1(r→∞)

)2

σ(r) = 1
2κ2

(
1

g2
eff

g
d−3

2
xx

)
r=rh

(
φ1(rh)
φ1(r)

)2

σH = 1
2κ2g2

eff(r)
g

d−3
2

xx

∣∣∣
r=rh

.

σB = σH

(
φ1(rh)

φ1(r→∞)

)2

and σ(r) = σH

(
φ1(rh)
φ1(r)

)2
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Solution: at µ = 0

d

dr
(N(r)

d

dr
φ(r)) + M(r)φ(r) = 0. (9)

ρ = 0⇒ M(r) = 0. Only solution that is consistent solution:
φ1(r) = φ0.

Trivial flow from horizon to boundary (Iqbal, liu)

Uncharged Case: We have

σB = σ(r) = σH = 1
2κ2g2

eff(r)
g

d−3
2

xx

∣∣∣
r=rh

.
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Solution: At µ 6= 0.

Since σB = σH( sT
ε+P )2, and since σB = σH

(
φ1(rh)

φ1(r→∞)

)2

take

the solution of the form

φ(r)

φ(rh)
= 1 +

ρ

sT
(At(r)− At(rh)).

Both at rh and boundary it produces desired result.

Plug above solution in

d

dr
(N(r)

d

dr
φ(r)) + M(r)φ(r) = 0.

We get after littlebit of rewriting[
g

d+1
2

xx

g
1
2
ttg

1
2
rr

d

dr
(g xxgtt)

]r

rh

= −2κ2ρAt

∣∣∣∣∣
r

rh

.

Next step: We want to relate above equation with Einstein
equation.
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Einstein equation

Rµν − 1
2gµν = TE .M.

µν + TMatter
µν .

Evaluate
√
−gRt

t −
√
−gRx

x , and use

√
−gRt

t = − d
dr

(
g

d−1
2

xx
d
dr

gtt

2g
1
2
rr g

1
2
tt

)
and

√
−gRx

x = − d
dr

(
g

d−3
2

xx g
1
2
tt

2g
1
2
rr

d
dr gxx

)
(

g
d+1

2
xx

g
1
2
tt g

1
2
rr

d
dr (g xxgtt)

)∣∣∣∣∣
r

rh

=

−2κ2ρAt

∣∣∣∣∣
r

rh

+ 2
∫ r
rh

dr
√
−g(T t, Matter

t (r)− T x , Matter
x (r))

Modulo last term, this equation is same as above.
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Constraint on matter stress tensor

Define null tangent vector lµ∂µ =
√
−g tt∂t +

√
g xx∂x , to the

constant r hyper durface.

Can write integrand as TMatter
µν lµlν = 0. Saturate null energy

condition.

Similar constraint was obtained by Buchel while proving
universality of shear viscosity to entropy ratio. What he
claimed was that Tµν ∼ gµν(...), for theories obtained from
supergravity. As an example consider scalr field which only
depends on radial cordinate r , then Tµν ∼ gµν(...).

Does it explains our previous observations?
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Constraint on matter stress tensor: Conductivity

For conformal and away from conformal theory:

σB = σH

(
sT
ε+P

)2

.

For lifshitz like theories: σB 6= σH

(
sT
ε+P

)2
since

T t, Matter
t (r)− T x , Matter

x (r) 6= 0.
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Conclusion: Single charge

σB =
1

2κ2g2
eff(r)

g
d−3

2
xx

∣∣∣
r=rh

(sT )2

(ε+ P)2

= σH
(sT )2

(ε+ P)2
, (10)

λ = − i

ω

(
gtt

gxx

)
r→∞

ρ2

ε+ P
+

1

2κ2g2
eff(r)

g
d−3

2
xx

∣∣∣
r=rh

(sT )2

(ε+ P)2
.

(11)

At any radius rc

λ = − i

ω

(
gtt

gxx

)
rc

(
ρ2

ε+ P

)
r→∞

+
1

2κ2g2
eff(r)

g
d−3

2
xx

∣∣∣
r=rh

(sT )2

(ε+ P)2

∣∣∣
r=rc

.

(12)
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Conclusion: Flow from horizon to boundary and Multiple
charge

First law of thermodynamics ε+ P = sT + ρµ goes over to
ε+ P → sT as r → rH .

σ(rc) = σH

(
sT
ε+P

)2∣∣∣∣∣
rc

.

σ(rc = rh) = σH

(
sT
ε+P

)2∣∣∣∣∣
rc=rh

= σH

ρiσ
−1
ij ρj = ρiσ

−1
H,iiρi

(
ε+ P

sT

)2

, (13)
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Thermal conductivity

Single charge: Using κT =
(
ε+P
ρ

)2
σ
T , we get κT = σHT s2

ρ2 .

Multiple charge: κT = s2T 1
ρiσ
−1
H, iiρi

.

Thermal conductivity to viscosity ratio:

Singlecharge: κT
ηT µ

2 = 8π2 1
2κ2g2

eff(r)
gd−2
xx

∣∣∣
r=rH

1
( ρ
µ

)2
.

Multiplecharge:
κT
ηT

m∑
j=1

(µj)2 = 8π2 1

2κ2
mP

j=1
ρig

2
eff,ii(r)ρi

gd−2
xx

∣∣∣
r=rH

m∑
j=1

(µj)2.

In the following we shall discuss universality of this ratio.
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Universal thermal conductivity at non zero µ

Gravity theory in d + 1 dimension κT
ηT

mP
j=1

(µj )2 d2

d−2

“
c
′

k
′

”
R-charge B.H. in 4 + 1 dim. 8π2 8π2

R-charge B.H. in 3 + 1 dim. 32π2 32π2

R-charge B.H. in 6 + 1 dim. 2π2 2π2

Reissner-Nordstrom B.H. in 3 + 1 dim. 4π2γ2 4π2γ2

All the above cases with ρ = 0 no change no change

Thermal conductivity to viscosity ratio is independent of
whether charge is present or how many of them. Just like η/s.

Question:Is there any relation between above numbers?

To answer this lets look at zero chemical potential case first.
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Thermal conductivity to viscosity ratio at zero chemical
potential

Consider CFT at T , µ = 0⇒ black hole in AdS.

Thermodynamics

P = c
′
T d χ = k

′
T d−2 (14)

ε+ P = Ts (15)

Transport coefficient:

η =
d

4π
c
′
T d−1, σ =

1

d − 2

d

4π
k
′
T d−3 (16)

κT
ηT µ

2 = d2

d−2

(
c
′

k ′

)
.
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Thermal conductivity to viscosity ratio at finite chemical
potential

Consider CFT at T , µ 6= 0⇒ charged black hole in AdS.

Thermodynamics

P = c
′
T d fp(m) χ = k

′
T d−2fχ(m) (17)

ε+ P = Ts + ρµ, m =
µ

T
(18)

Transport coefficient:

η =
d

4π
c
′
T d−1fη(m), σ =

1

d − 2

d

4π
k
′
T d−3fσ(m) (19)

κT
ηT µ

2 = d2

d−2

(
c
′

k ′

)(
f 2
p fσ
f 2
χ fη

)
.

f 2
p fσ
f 2
χ fη
|m 6=0 = 1.

σ = 1
d−2

d
4πk

′
T d−3 f 2

χ fη
f 2
p
. Fully determined by thermodynamics.
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Ratio interms of central charges of dual gauge theory.

CFT at small length scale

〈Jµ(x)Jν(0)〉 ∼ k

x2(d−1)
(...), 〈Tµν(x)Tαβ(0)〉 ∼ c

x2d
(...),

(20)

c, k measure total and charged degree of freedom. So we
expect k ≤ c .

It was shown by kovtun and ritz that

c
′

c
=

1

4π
d
2

(4π

d

)d Γ(d/2)3

Γ(d)

d − 1

d(d − 1)
,

k
′

k
=

1

2π
d
2

(4π

d

)d−2 Γ(d/2)3

Γ(d)
(21)

κT
ηT µ

2 = d2

d−2

(
c
′

k ′

)
= 8π2 d−1

d3(d+1)
c
k .
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Conclusion

Though I have only discussed conformal systems, it turns out
that away from conformality also, similar result exist.

κT
ηT µ

2 = 8π2 1
2κ2g2

eff(r)
gd−2
xx

∣∣∣
r=rH

1
( ρ
µ

)2
.

Right hand side of above equation should be independent of
T , µ and some universal number.

This remains to be understood. This will require more
information on TMatter

µν and gauge coupling. In particular how
it depends on matter fields.
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